您好 欢迎来到超硬材料网  | 免费注册
远发信息:磨料磨具行业的一站式媒体平台磨料磨具行业的一站式媒体平台
手机资讯手机资讯
官方微信官方微信
郑州华晶金刚石股份有限公司

碳家族添新丁:科学家预言的T-碳问世 比肩石墨金刚石

关键词 T碳 , 金刚石 , 石墨|2017-11-24 11:34:58|来源 石墨烯资讯
摘要 碳原子是神奇的,既可构成世界最软的矿物质石墨,也能构成自然界中最坚硬的物质金刚石。最近我国科学家又在碳原子研究上获得突破:由中科院大学物理学院苏刚教授等人通过理论计算预言的一种三维...

       碳原子是神奇的,既可构成世界最软的矿物质石墨,也能构成自然界中最坚硬的物质金刚石。最近我国科学家又在碳原子研究上获得突破:由中科院大学物理学院苏刚教授等人通过理论计算预言的一种三维碳结构T-碳(T-carbon)诞生,中外科学家联合研究团队成功合成了T-碳,从而使T-碳成为可与石墨和金刚石比肩的碳的另一种三维新结构。

       11月23日,苏刚在接受科技日报记者采访时表示,T-碳是一种蓬松的碳材料,内部有很大的可利用空间,如果用作储能材料,其储氢能力重量百分比不低于7.7%。苏刚认为,T-碳将会在光催化、吸附、储能、航空航天材料等领域拥有广泛的应用前景。

       1980年代以来,科学家对获得碳的新结构兴趣浓厚,并催生了两次诺贝尔奖。这不仅在化学、物理、材料和信息科学等相关领域产生巨大影响,也催生了工业和技术上的大量应用。基于这些结构,科学家又合成了许多新的衍生物,并制成了新的功能器件和相关产品。

       碳原子有四个价电子,发生轨道杂化(原有一些能量较近的原子轨道重新组合成新的原子轨道)后它就像四只手,具有很强的与自身及其他元素相结合的能力。碳可以形成sp2杂化的石墨烯,形成sp3杂化的金刚石,还有sp-sp2杂化的石墨炔,sp-sp3杂化的金刚石炔。“化学上,碳可以与其他元素结合在一起,组成包括DNA、蛋白质和其他重要的生物大分子,从而使碳成为地球上组成生命的最基本的元素之一。”苏刚说。

       2011年,苏刚指导博士生胜献雷等通过大量对比研究后提出,如果将立方金刚石中的每个碳原子用一个由四个碳原子组成的正四面体结构单元取代,将会形成碳的一种新型三维立方晶体结构。他们基于密度泛函的第一性原理研究,发现这种结构在几何、能量以及动力学方面都是极其稳定的。他们把这种碳的新型同素异形体命名为T-carbon。研究表明,T-碳具有与金刚石相同的空间群,是一个具有直接带隙的半导体,可通过掺杂来调控带隙以适用于光催化。T-碳还有一个鲜明特点,密度非常小,约为石墨的2/3,金刚石的一半。

       苏刚等人通过计算发现T-碳可能在负压环境下更易形成。T-碳有可能在宇宙星际尘埃或太阳系外行星中被观测到。

       对于发现T-碳的工作,业内专家给予高度评价,认为“T-碳开启了碳结构研究的新纪元,将激发其他科学家进行广泛的理论和实验研究”。

       T-碳能否在实验室合成?苏刚近年来一直致力于推动T-碳的实验合成工作。2017年年初,西安交通大学和新加坡南洋理工大学的联合研究团队,通过皮秒激光照射悬浮在甲醇溶液中的多壁碳纳米管,在极端偏离热力学平衡态的条件下,成功地实现了从sp2到sp3化学键的转变,其形成的新型碳材料与理论预测的T-碳完全一致,证明合成了T-碳。有关合成T-碳的实验结果前不久在《自然·通讯》上公布。

       结构决定性能这个基本的化学原理在碳素材料中得到了最神奇的体现,改变碳原子之间的连接方式就会得到性能迥然不同的材料。石墨是半金属和柔软的润滑剂;金刚石不导电,是最硬的材料;碳纳米管既可以是半导体,又可以是金属,同时又是强度最高的纤维;与碳纳米管相似,石墨烯集好几项看似不相容的性能与一身,是载流子迁移率最高的半导体。从人工合成金刚石到碳纳米管和石墨烯,碳科学一直保持在科学研究的前沿。

微信图片_20171124114032.jpg


       在2011年,科学家通过计算预言了T-carbon的可能性,但是从来没有人观察到、能够在实验室合成。近日,西安交大电气学院电力设备电气绝缘国家重点实验室新型储能与能量转换纳米材料研究中心牛春明千人团队张锦英研究小组在碳素材料研究过程中取得突破,合成了碳的又一个新型同素异形体,通过皮秒激光照射悬浮在甲醇溶液中的多壁碳纳米管,在这种极端偏离热力学平衡态的条件下,成功地实现了从sp2到sp3化学键的转变,捕捉到了这种亚稳态结构。

1511494908745912.jpg


       详细的结构研究发现在瞬间飞秒激光照射下中空的碳纳米管转变为实心的碳纳米棒,碳纳米棒中碳原子之间的连接方式同理论预测的T-carbon完全一致,证明合成了这种结构。实验的化学反应过程涉及气、液和固态三相,反应机理有待进一步研究。

1511494920110458.jpg


       该研究激光实验操作由西安交大机械学院王文君研究团队完成,电镜工作由西安交大电信学院贾春林教授团队完成,理论模拟工作由新加坡南洋理工大学苏海滨研究团队完成。相关成果以“Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires in methanol under irradiation of picosecond laser” 为题发表在Nature Communications杂志(https://www.nature.com/articles/s41467-017-00817-9)。

 

① 凡本网注明"来源:超硬材料网"的所有作品,均为河南远发信息技术有限公司合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:超硬材料网"。违反上述声明者,本网将追究其相关法律责任。

② 凡本网注明"来源:XXX(非超硬材料网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

③ 如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

※ 联系电话:0371-67667020

柘城惠丰钻石科技股份有限公司
河南联合精密材料股份有限公司