您好 欢迎来到超硬材料网  | 免费注册
远发信息:磨料磨具行业的一站式媒体平台磨料磨具行业的一站式媒体平台
手机资讯手机资讯
官方微信官方微信

纳米陶瓷结合剂cBN砂轮的研究进展

关键词 纳米 , 陶瓷结合剂 , cBN砂轮|2016-04-28 09:30:39|技术信息|来源 中国超硬材料网
摘要 刘瑞平,苏伟明(中国矿业大学(北京)材料系,北京100083)摘要:文章综合论述了纳米陶瓷结合剂的性能特点、增强增韧机理以及研究进展,并探讨了纳米陶瓷结合剂cBN砂轮制备过程中存在...
刘瑞平,苏伟明
(中国矿业大学(北京)材料系,北京100083)
  摘要:文章综合论述了纳米陶瓷结合剂的性能特点、增强增韧机理以及研究进展,并探讨了纳米陶瓷结合剂cBN砂轮制备过程中存在的问题及对策,指出纳米陶瓷结合剂不仅可以解决目前陶瓷结合剂低熔点与高强度之间的矛盾,而且对于拓宽cBN砂轮的应用范围、适应超高速磨削技术具有十分重要的意义。
  关键词:纳米陶瓷结合剂;cBN砂轮;研究进展;综述

  1 引言
  由于立方氮化硼(cBN)具有硬度高、耐磨性好、热稳定性好、在高温下与铁族材料不发生化学反应等优点,已在各类磨削工具中得到了广泛应用。在各类cBN砂轮结合剂中,金属结合剂自锐性差、在加工金属材料时易发生黏着,树脂结合剂热稳定性较差,而陶瓷结合剂介于金属结合剂和树脂结合剂之间,其耐热温度较高、自锐性较好、强度高、耐磨性好。陶瓷结合剂cBN砂轮不仅具有切削锋利、磨削力小、生产效率高、使用寿命长、易于整形与修锐、磨削精度高等优点,而且还具有磨削时工件温度低,能消除残余拉应力而产生残余压应力,使工件耐用度提高30%~50%的特点。因此,陶瓷结合剂cBN砂轮作为一类高速、高效、高精、低成本、低污染的高性能磨具产品,成为近年来世界磨具研究开发的重点。
  陶瓷结合剂的开发研究是陶瓷结合剂cBN砂轮制造的基本前提,高性能陶瓷结合剂是制备高性能陶瓷结合剂cBN砂轮的关键。随着近年来超高速cBN砂轮的的发展,对陶瓷结合剂的性能提出了更高的要求,即要求结合剂具有高强度、低耐火度、良好的气孔性、浸润性、工艺性、化学稳定性的特点且与cBN磨料热膨胀系数匹配,然而传统的陶瓷结合剂普遍存在烧结温度高、强度低等缺陷。纳米陶瓷结合剂由于其粒度小、比表面积大、烧结温度低、强度高、韧性好等优点,有望解决目前传统陶瓷结合剂低烧结温度和高强度之间的矛盾问题,提高陶瓷结合剂cBN砂轮的性能,进一步拓宽cBN砂轮的应用范围。

  2 纳米陶瓷结合剂的特点
  除具有常规传统陶瓷结合剂的优点之外,纳米陶瓷结合剂还具有如下独特的特点:
  (1)纳米陶瓷结合剂不仅可以用于超细cBN微粉砂轮的制造,解决常规陶瓷结合剂分布不均匀、对cBN磨料把持力小的问题,而且可以解决粗颗粒的cBN砂轮容易产生工具强度低和磨粒把持力不足问题。
  (2)纳米陶瓷结合剂引入纳米级的颗粒、片晶、晶须和纤维等第二相,不仅降低了cBN磨具的烧结温度,而且结合剂的韧性大大提高,有效解决了cBN磨料-传统陶瓷结合剂界面应力问题,使得粗颗粒工具的强度大幅度提高。
  (3)纳米陶瓷结合剂比普通结合剂具有更低的软化温度和更好的韧性。低的软化温度使得纳米陶瓷结合剂的烧结比普通结合剂的烧结更加致密化,而好的韧性提高了纳米结合剂的拉应力承受极限。

  3 纳米陶瓷结合剂的增强增韧机理
  自1987年德国Karch等首次报道了纳米陶瓷的高韧性、低温超塑性能后,世界各国对利用纳米颗粒以解决陶瓷材料脆性和难加工性寄予厚望。当把直径为纳米级的颗粒加入陶瓷中时,其强度和韧性大大提高。纳米陶瓷由于晶粒的细化,晶界数量会极大增加,同时纳米陶瓷的气孔和缺陷尺寸减小到一定尺寸就不会影响材料的宏观强度,结果可使材料的强度、韧性显著增加。有关纳米陶瓷复合材料的增韧强化机理目前不很清楚,说法不一,归纳起来大致有以下几种:
  第一种是细化理论,该理论认为纳米相的引入能抑制基体晶粒的异常长大,使基体结构均匀细化,是纳米陶瓷复合材料强度韧性提高的一个原因。
  第二种是穿晶理论,该理论认为基体颗粒以纳米颗粒为核发生致密化而将纳米颗粒包裹在基体晶粒内部,因此在纳米复合材料中存在晶内型结构,而纳米复合材料性能的提高与晶内型结构的形成及由此产生的次界面效应有关。晶内型结构能减弱主晶界的作用,诱发穿晶断裂,使材料断裂时产生穿晶断裂而不是沿晶断裂。
  第三种是钉扎理论,该理论认为存在于基体晶界的纳米颗粒产生钉扎效应,从而限制晶界滑移和孔穴、蠕变的发生。氧化物陶瓷高温强度衰减主要是由于晶界的滑移、孔穴的形成和扩散蠕变造成的,因此钉扎效应是纳米颗粒改善氧化物高温强度的主要原因。

  4 纳米陶瓷结合剂cBN砂轮的研究进展
  纳米陶瓷结合剂是一种新型的超硬磨具结合剂,它显著降低了磨具烧结温度,大幅度提高了制品强度、韧性和耐磨性,且气孔可控,为陶瓷结合剂的应用开拓了一个崭新的领域。近年来国内对纳米陶瓷结合剂进行了探索研究。燕山大学王艳辉课题组系统地研究了纳米陶瓷结合剂制备过程中的一系列关键问题,开发出了一系列新型的纳米陶瓷结合剂。研究发现,在纳米陶瓷结合剂中加入20%~30%的水和适量的表面活性剂,可以提高成型密度、毛坯强度和制品的抗折强度,同时,其通过改变造孔剂的粒度和掺入量,可以获得近于无气孔的致密型和具有均匀分布的圆形理想气孔的结合剂,气孔孔径和数量可控,并且气孔率可以在大范围内调整,这种理想型均匀分布的圆型气孔不仅对结合剂的强度影响较小,而且可以最大效率地发挥容屑、断屑、贮存冷却液、润滑剂的作用。
  为了解决纳米陶瓷结合剂粉体易于团聚、分散性差的问题,燕山大学赵玉成课题组采用高分子网络凝胶法(P-G法)制备了用于超精磨削用超硬砂轮陶瓷结合剂组分。研究表明,采用P-G法制备单组分氧化物粉体(如Al2O3、MgO、SiO2、ZnO等),由于凝胶过程中所形成的高分子网络的阻碍作用,使粒子在溶液中的移动受到限制,在干燥和烧结过程中,粒子接触和聚集的机会减少,可以减小团聚的产生,有希望获得颗粒尺寸小、分散均匀的超细粉体材料,制备得到的氧化物粉末易于确定煅烧温度,可以制备出物相单一、颗粒形态近球形、粒度分布窄的纳米粉体,但对于化学性质活泼的Na2O、K2O等氧化物的粉体则难以制备。
  鉴于溶胶凝胶法在材料制备方面所展示的特点,湖南大学胡伟达探讨了溶胶凝胶法制备Na2O-B2O3-Al2O3-SiO2系陶瓷结合剂原料及工艺因素的影响,优化出的最佳工艺参数为:加水量r(nH2O/nTEOS)为60,pH 调节为4,凝胶化温度为70℃,后续凝胶热处理温度为500℃,最后经球磨处理并过200目筛网,制得陶瓷结合剂粉末[9]。
  除此之外,东北大学张景强等人以超高速陶瓷cBN砂轮的结合剂低温高强性能要求为目标,在以化学纯原料为主的R2O-RO-B2O3-Al2O3-SiO2玻璃体系基础上,引入纳米改性剂来对陶瓷结合剂基体进行了改良强化。结果表明,纳米陶瓷结合剂的抗折强度、耐火度、浸润性以及线膨胀系数与普通陶瓷结合剂相比有着显著优势。

  5 纳米陶瓷结合剂cBN砂轮存在的问题及对策
  与传统的陶瓷结合剂相比,尽管纳米陶瓷结合剂具有强度高、韧性好、烧结温度低等优点,但由于其粒度较小、比表面积大,在cBN砂轮的制备过程中还存在一些问题,具体表现在以下几个方面:
  (1)由于纳米陶瓷结合剂的细粒度及极大表面积,外观膨松,密度较低,这可能对磨具的成型带来一定的困难。因此必须采用适当的压制工艺,获得较高的毛坯密度,从而提高烧结强度,减少烧成收缩。
  (2)纳米陶瓷结合剂单组份粉体制备比较容易,但问题是在后续球磨混合的过程中如何保证其分散性良好且均匀分布。为了解决这一问题,可以采用溶胶-凝胶法制备多组元的混合氧化物陶瓷粉体,实现其分子级别的均匀混合,除此之外,还可以结合凝胶注模成型工艺的原理,通过球磨后高分子网络固化而得到均匀分散的纳米陶瓷结合剂。
  (3)由于纳米颗粒的活性较高,烧结过程中易出现晶粒的异常长大且难以致密等缺点。因此,要获得真正意义上的纳米陶瓷结构材料并不容易。为了解决这一问题,可以采用新型的低温快速烧结工艺,如SPS等,同时探寻加入抑制纳米颗粒异常长大的微量添加剂等。
  (4)与传统陶瓷结合剂相比,对纳米陶瓷结合剂中气孔的结构(如形状、含量和大小)和其性能之间的关系缺乏系统深入的研究。因此,应加强纳米陶瓷结合剂中气孔的尺寸和含量对其性能的影响规律的研究。

  6 结束语
  纳米陶瓷结合剂cBN砂轮是cBN磨具发展的必然趋势,其优异的性能不仅可以解决目前传统陶瓷结合剂cBN砂轮存在的问题,而且可以大大拓宽其加工范围和应用领域,展现出巨大的应用前景。为适应超高速磨削技术对cBN砂轮提出的更高的要求,应系统地研究纳米陶瓷结合剂制备的基础科学问题,同时继续加强高性能纳米陶瓷结合剂的研究和开发工作,加强纳米陶瓷结合剂cBN砂轮在超高速磨削、航空航天等难加工材料磨削方面的应用研究。
 

① 凡本网注明"来源:超硬材料网"的所有作品,均为河南远发信息技术有限公司合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:超硬材料网"。违反上述声明者,本网将追究其相关法律责任。

② 凡本网注明"来源:XXX(非超硬材料网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

③ 如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

※ 联系电话:0371-67667020

延伸推荐

成果论文 | 三维金刚石纳米线中超导电性的量子耗损

超导纳米线是单光子探测器、超高品质因子微波谐振腔和量子电路等多种先进量子器件的基本构筑单元。大量研究表明,在直径小于相干长度的一维纳米线中,超导序参量的...

日期 2024-12-17   超硬新闻

邢台惠捷超硬材料制品制造有限公司取得陶瓷结合剂金刚石...

金融界2024年11月23日消息,国家知识产权局信息显示,邢台惠捷超硬材料制品制造有限公司取得一项名为“一种陶瓷结合剂金刚石砂轮生产装置”的专利,授权公告号CN222035722U...

黄河旋风与厦门大学萨本栋微米纳米科学技术研究院成立集...

11月11日,黄河旋风与厦门大学萨本栋微米纳米科学技术研究院成立集成电路热控联合实验室,签约暨揭牌仪式在黄河旋风举行。厦门大学洪明辉教授、侯亮教授、马盛...

【直播预告】富栊新材申礼文:表面纳米化改性金属粉末及...

富栊新材成立于2012,是一家从事超细电解粉未研发、制造、推广、销售与服务的高新技术企业。公司主营产品包括铁镍系列预合金粉末、铁铜镍锡系列预合金粉末、铁...

日期 2024-10-31   超硬新闻

中国石油超耐磨纳米金刚石涂层材料实现工程应用

截至10月15日,中国石油工程材料研究院首创研发的低摩擦超耐磨纳米金刚石涂层材料,在兰州石化榆林分公司40万吨/年全密度聚乙烯装置的关键部件——颗粒振动...

日期 2024-10-21   超硬新闻

欧开发下一代纳米线太阳能电池

科技日报讯(记者刘霞)据美国趣味工程网站10月11日报道,一个名为“ZEUS”的欧洲科研项目近日获得400万欧元资助,旨在未来4年内,开发出下一代纳米线太阳能电池。这种电池有望为低...

日期 2024-10-14   能源化工

纳米尺度:金刚石热输运新进展!

近日,厦门大学电子科学与技术学院于大全教授、林伟毅助理教授团队在纳米尺度下金刚石的热能输运机理研究方面取得重要进展,相关成果以“Quasi-2DPhon...

日期 2024-09-18   超硬新闻

丁醇木质素热解过程中纳米金刚石的形成

背景介绍碳材料因其在二氧化碳捕获、催化、气体存储、电极材料等众多领域的优良性能而备受关注。生物质是碳材料的主要来源之一,发展从生物质中获取碳材料的技术是...

日期 2024-09-12   超硬新闻

Cooler Master 新散热膏:纳米金刚石与六...

在这个追求极致性能与个性化的时代,硬件界的每一次创新都能引起广大玩家的热烈讨论。近日,散热领域的巨头CoolerMaster推出了一款名为CryoFuz...

日期 2024-09-06   超硬新闻

揭秘人造金刚石的“多面手”身份:单晶、多晶、类多晶、...

在这个科技日新月异的时代,金刚石——这一自然界的奇迹,正以它多变的形态和卓越的性能,在各个领域大放异彩。今天,就让我们一起走进人造金刚石的奇妙世界,揭开...

日期 2024-08-15   超硬新闻