您好 欢迎来到超硬材料网  | 免费注册
远发信息:磨料磨具行业的一站式媒体平台磨料磨具行业的一站式媒体平台
手机资讯手机资讯
官方微信官方微信
郑州华晶金刚石股份有限公司

金刚石表面Cr金属化的界面扩散反应研究

关键词 金刚石 , 表面Cr , 金属化 , 界面扩散|2008-08-22 00:00:00|来源 中国超硬材料网
摘要 摘要:利用直流磁控溅射法在金刚石颗粒表面沉积了厚度为150nm的金属Cr薄膜。SEM研究表明在金刚石表面形成的Cr膜基本均匀,但有小的金属聚集体存在。俄歇深度剖析研究发现,在镀膜过...

  摘要:利用直流磁控溅射法在金刚石颗粒表面沉积了厚度为150nm的金属Cr薄膜。SEM研究表明在金刚石表面形成的Cr膜基本均匀,但有小的金属聚集体存在。俄歇深度剖析研究发现,在镀膜过程中Cr膜和金刚石基底间发生了显著的界面扩散作用。相应的俄歇线形分析表明,沉积过程中在界面上发生化学反应形成了部分Cr2C3物种。溅射沉积功率对金刚石颗粒与金属Cr膜的界面扩散反应有较大的影响。提高溅射功率可大大促进Cr元素的扩散,但对于C元素的扩散作用则影响较小。界面扩散反应的本质是荷能Cr原子与金刚石基底的碰撞注入作用。
  关键词:磁控溅射;金刚石;Cr;界面扩散反应;AES
  中图分类号:TG731 TG156.8  文献标识码:A
  文章编号:1001-4381(2000)01-0024-03
  
  The Study of Interface Diffusion and Reaction between Cr and Diamond Deposited by Magnetron Sputtering Technigue
  
  Abstract:A Cr layer with thickness of 150nm was successfully deposited on the surface of diamond particles using DC magnetron sputtering technique. The interface diffusion and reaction between Cr layer and diamond substrate have been studied using AES depth profile and line shape analyses. The results show that interface diffusion and reaction take place during the deposition of Cr layer. The Cr atoms diffuse into diamond substrate, and react with carbon atom in diamond to form carbide on the interface. The interface diffusion and reaction result from the impact of Cr atoms which keep an energy of 3~4eV. The interface diffusion and reaction can be promoted significantly by raising the sputtering power.
  Key words:sputtering; diamond; Cr; interface diffusion and reaction; AES
  
  金刚石具有许多优异的性能[1,2],多用于切削工具。但由于金刚石的表面能高及化学惰性,金刚石与金属胎体的结合较弱,从而影响了金刚石切削工具的性能和寿命。表面金属化是解决这一问题的有效方法。其中磁控溅射镀膜获得的金属化金刚石的结合强度较好,但目前对溅射沉积过程中的界面物理化学过程还不很了解[3,4]。本研究利用磁控溅射法在金刚石颗粒表面沉积了150nm厚的金属Cr层,并运用俄歇电子能谱研究了Cr/金刚石界面的结合状态。
  
  1 实验方法
  
  将粒径为40~50目的人造金刚石颗粒置于旋转装置中,利用Ar气氛直流磁控溅射法在金刚石颗粒表面镀制均匀的Cr金属薄膜,Cr层厚度控制为150nm。制备室的真空度优于2×10-4Pa,溅射时的Ar气分压为0.15Pa。沉积速率为0.4 nm/s,Cr靶材及Ar气的纯度均为99.999%。
  俄歇电子能谱分析在PHI-610/SAM扫描俄歇电子能谱仪上进行。采用单通道CMA能量分析器,能量分辨率0.3%,同轴电子枪的分析电压为3.0kV,电子束入射角为60°,分析室真空度优于2×10-7Pa。Ar离子枪溅射速率经热氧化SiO2校准为30nm/min。SEM实验在CSM950扫描电子显微镜上进行。其二次电子像的分辨率优于5 nm。
  
  2 实验结果与讨论
  
  2.1 磁控溅射法制备Cr/金刚石样品的表观形貌
  镀Cr膜前后金刚石颗粒的SEM研究结果表明两者差异显著。镀Cr膜的金刚石颗粒表面均匀分布着许多细小的白斑,扫描电镜的能谱分析表明此处的Cr含量明显高于黑色区域,说明在Cr膜的沉积过程中部分金属聚集并形成岛状结构。
  
  2.2 Cr/金刚石样品制备过程中的界面扩散
  图1为Cr/金刚石样品的俄歇深度剖析图。可见,金属Cr膜的厚度约为150nm,其与金刚石的界面层宽度约为65nm,比蒸发镀膜产生的界面层宽得多,说明Cr/金刚石之间发生了界面扩散作用。这是由于溅射沉积过程中,高能Cr原子轰击金刚石表面并产生部分“注入”效应而导致金属Cr向金刚石基底扩散。  

图1 Cr/金刚石原始样品的俄歇深度剖析结果
  Fig.1 The AES depth profile spectrum of
  un-annealed Cr/diamond particle
  
  表面层的氧主要来源于表面吸附及Cr的自然氧化层,因而含量较高。由于在金刚石颗粒表面制备的Cr层较薄并具有较多结构缺陷,使得表面的部分吸附氧可以扩散进入膜层内部,同时在金属Cr膜的沉积过程中,由于真空中存在残余的氧气或水汽,所以在膜层中也可产生少量的残留氧。这种氧的含量低且基本不随薄膜的深度而变化。在深度剖析图中,虽然发生了界面扩散作用并形成了较宽的界面扩散层,但并没有形成化学计量比的碳化物层。
  
  2.3 Cr/金刚石原始样品的界面反应产物研究
  俄歇线形分析可研究各元素在薄膜层中的化学状态,从而推断界面化学反应情况、确定界面反应生成的物种[5~7]。
  图2为原始样品的C KLL俄歇线形谱,其中金刚石标准物的峰位于269.1eV处,碳化物的俄歇峰有3个,分别位于249.6eV,257.9eV和267.0eV。样品表面C的俄歇峰位于260.0eV处,形状与金刚石标准样的十分相似,没有峰形迭加的迹象。表面的碳峰主要由吸附的C污染所产生(由于Ar+的溅射会使金刚石石墨化,因而所示金刚石标准样实际上是石墨化的金刚石)。
 

  图2 原始样品不同深度处的C KLL线形谱
  Fig.2 The line shape of C KLL in various
  depth of Cr/diamond deposited sample
  
  在靠近Cr层的Cr/金刚石界面处(溅射3.5min),C的俄歇线形与表面处有显著差异。在249.6eV和257.9eV处出现了两个微弱峰,其峰形及峰位与碳化物的十分吻合;267.0eV处的峰表现出了碳化物和单质碳迭加峰的特征,其中碳化物的相对含量更高些。溅射4.2min后,碳的俄歇线形比较接近金刚石标准物,但249.6eV和257.9eV位置处有小凸起,大于260 eV峰的位置也略在动能高处,体现出碳化物的特征。这说明该峰仍为碳化物和单质碳的复合峰,但单质碳的相对比例远高于碳化物。溅射5.2min后,碳的俄歇峰形同溅射4.2min后的峰相比在位置和形状上都更接近于金刚石,证明单质碳的比例占绝对优势。尽管此时还未到达金刚石本体,但已经没有碳化物存在。在界面层,碳化物主要来自于界面化学反应,而单质碳则由金刚石基底的扩散作用产生。
  由此可见,在Cr/金刚石原始样品的制备过程中,发生了较为明显的界面扩散,但化学反应的程度较小。在界面区,当Cr的含量较高时,碳主要以金属碳化物的形式存在,当Cr含量较低时,C则主要以单质形式存在。
  图3为Cr LM23M4的俄歇线形谱,各标准物的俄歇峰位置如图所标。表面处Cr的俄歇峰形较宽,其俄歇线形不同于任何一种标准物。对于该峰无法推测其具体物种,只能认为是多种物质的混合物。但其峰形与氧化物的相差很多,说明表面的Cr并不主要以氧化物的状态存在,表面大量的氧主要来自于吸附的污染。溅射3.5min后,样品的俄歇峰形与金属Cr的极为相似,即Cr多以单质形式存在。溅射4.2min后,样品的峰形与单质Cr的明显不同,峰位偏低且在480eV处有小凸起,说明该峰为金属和碳化物的迭加峰。溅射5.5min后,样品480eV处的小峰更加明显,485eV附近的峰继续移向俄歇低动能处且峰形更加变宽,表明碳化物的含量大大增加。此时的深度位于接近金刚石本体,C的含量很高,但Cr并没有完全转变成金属碳化物,这说明尽管样品已经发生了较为显著的界面扩散,但界面反应程度较轻。
  
   

  图3 原始样品不同深度处的Cr LM23M4线形谱
  Fig.3 The line shape of Cr LM23M4 in
  various depth of Cr/diamond deposited sample
  
  图4为Cr的LM1M4俄歇线形谱。在该能量段内金属单质和碳化物的俄歇线形很接近。可以看到,样品的俄歇线形都与氧化物的不同,因而样品中Cr的氧化物含量都很少。图5为Cr的MVV俄歇线形谱。在该能量段内氧化物比碳化物和金属单质的俄歇跃迁强很多,所以此时样品的峰形和峰强并不能反映各物种量的多少。由图可见,样品的俄歇峰都处于氧化物和碳化物之间且峰形较宽,表明这两种化合物同时存在。由该图可以断定金属镀膜中和界面区内始终存在着少量金属氧化物。\


   可见,磁控溅射法镀膜使Cr/金刚石发生较为明显的界面扩散作用和微弱的界面化学反应。界面扩散反应的推动力主要为沉积原子Cr所具有的动能。
  
  2.4 溅射功率对界面扩散反应的影响
  以不同溅射功率镀膜的样品的深度剖析图中,形成1∶1混合物层的深度和界面宽度与溅射功率的关系如下表所示。从中可见,随溅射功率增大,Cr/金刚石的界面宽度相应增加,表明增大溅射功率可促进Cr/金刚石间的界面扩散;等比点变深,表明Cr的扩散作用加强。
 

 从Cr膜表面到金刚石本体,1∶1点和界面层终止深度随功率增大而逐渐深入,且随功率增加前者深入的速度比后者快,说明功率对Cr的扩散影响更大。这是因为提高溅射功率可以产生两个效应。其一,使基片温度升高,加快Cr/金刚石间扩散的速率,但此效应不显著,因而它实际可引起固体分子间的扩散作用是微乎其微的;其二,增强“注入”效应,这是功率增加引起界面层加宽的主要原因。溅射功率增大提高了靶材出射粒子的动能,使得粒子在基底中可以克服较多的分子间作用力而行驶更长的距离,在宏观上就表现为界面宽度增加,且界面向基底中推进。由于这种现象取决于溅射沉积原子的动能,故对于C原子扩散的促进作用较小。同时,具有较高能量的Cr可以和金刚石中的碳原子反应在界面上形成金属碳化物。
  3 结论
  
  运用磁控溅射法在金刚石颗粒表面沉积了150nm厚的Cr金属膜。样品在镀膜中就发生了显著的界面扩散反应,在界面处生成了Cr2C3金属碳化物。界面扩散反应的源动力是溅射沉积原子的高动能。增加溅射沉积功率可以大大促进Cr的扩散作用,从而增强界面扩散反应。
 

 

① 凡本网注明"来源:超硬材料网"的所有作品,均为河南远发信息技术有限公司合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:超硬材料网"。违反上述声明者,本网将追究其相关法律责任。

② 凡本网注明"来源:XXX(非超硬材料网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

③ 如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

※ 联系电话:0371-67667020

柘城惠丰钻石科技股份有限公司
河南联合精密材料股份有限公司