引言:
金刚石材料具有硬度高、光学透明度好、热导率高的卓越性能。在100K温度左右热导率高达10000W/(m.K),在室温下热导率高达2500 W/(m.K)。目前,人造单晶金刚石广泛应用在光学、X射线、光电子和电子设备中。尤其是高纯IIa型人造金刚石,是高功率短波自由电子激光设备中X射线反射镜的绝佳材料。而掺硼IIb型人造金刚石(BDD)则是用于高功率高频高温电子设备的典型P型半导体材料。在以上两种设备领域,热导率是影响设备设计的关键参数,而对于BDD热导率的研究目前则比较少。
金刚石热导率的早期研究主要在1911-1953年间,主要对杂质密度未经处理的天然金刚石的热导率进行研究。1990-1993年间,不少学者对人造金刚石的热导率进行了大量研究;主要是在不同同位素含量条件下研究人造金刚石热导率和温度的关系。实验数据经过Debye-Callaway模型框架分析,得出结论:高纯金刚石的热导率主要手碳同位素原子的声子散射影响。在热导率的研究中主要考虑了两种截然不同的方法:不予考虑声子-声子散射的正规过程;假定存在正规过程的支配控制。Wei等人通过设定一个系数来计算求得声子-声子散射的正规过程的影响并使其与100-1000开氏度范围内热导率-温度关系相拟合。
本研究对高纯单晶人造金刚石和掺硼金刚石在20-400开氏度温度范围内的热导率进行了对比实验研究。BDD中掺硼浓度满足各类电子设备p+金刚石衬底材料代表值的要求。在温度低于100开氏度和高于室温时虽然实验数据略有偏差,但掺硼BDD热导率仍然比其他宽带隙半导体材料的热导率要高,且仅比高纯人造金刚石的热导率低30%左右。研究对影响IIa型和IIb型金刚石声子散射过程的差异因素进行了分析。
实验设计
利用量子物理性质测量设计系统(QD PPMS)和EverCool2密闭循环低温恒温器并采用稳态法对热导率进行测量。PPMS系统在1.8-400开氏度温度范围可以实现高真空测量(<10-5Torr),温度误差仅0.05开氏度。
根据稳态法可知,当通过试样的热流为常量时,试样一端的热功率和试样两端的温差ΔT成比例关系,如下所示:
其中,l为试样长度,S为横截面积,k为热导率。
稳态法的基本工作原理如图一所示。对一个试样的一端进行加热,另一端连接恒温槽。测量得到试样两端的温度和常量温差,并根据公式1a计算热导率。
图一:稳态法基本工作原理
试样制备
利用温度梯度法在高温高压条件(5.5GPa、1440℃)下在“螺旋环形”高压装置内制备出人造单晶金刚石。所用溶媒合金为Fe-Al-C合金(91:5:4 wt%)。溶剂中添加铝作为除氮剂。碳源为高纯石墨(99.9995%)。
在碳源中添加0.5at%的无定形硼用于IIb型金刚石生长;根据红外光谱观测,生成的BDD晶体中的硼浓度约1019cm-3(~20ppm)。这种掺杂晶体的电子属性和生长问题在本文参考文献中详细说明。
利用激光将生长出的金刚石晶体切成成片,并对其进行机械打磨抛光,金刚石片厚度约100μm。利用CVD法在BDD片上生长出绝缘IIa型金刚石薄层(~10μm),用于电绝缘(如图二)。利用仲烷基磺酸钠、丙酮和异丙醇对金刚石片进行化学清洗,然后在680℃下对其进行热处理,以去除金刚石片上的污渍并防止表面发生氢导电性。
图二:生长出CVD金刚石层后的试样横截面
图三:(a)带有测温器和加热器的试样;(b)加热器和测温器的放大示意图
图四:固定在试样球上的试样示意图
图五为试样的实验数据。可以看出,IIa型金刚石在室温下的热导率为2500 W/(m.K),和已知实验数据接近。在90开氏度时最大热导率达到17000 W/(m.K)以上。在150开氏度以下,IIa型金刚石的热导率是BDD热导率的10倍,但在高于300开氏度温度时两者温差仅30%左右。
图五:BDD金刚石和高纯IIa型金刚石的实验数据
图六:IIa型金刚石热导率的测量值和计算值;声子散射的不同过程的影响
对于点缺陷,我们考虑采用同位素置换的办法:
在扩展结构性缺陷的声子散射中,有两个因素需要考虑:晶格缺陷的散射和弹性场的散射。
下述为散射次数的表达式:
根据公式(3)-(8)计算热导率和温度的关系,如图6所示。每条曲线代表一种情形下的热导率。图6说明了声子散射过程在一定温度范围内的影响。X射线衍射研究表明以TISNCM法生长出的IIa型金刚石的位错密度较低,因此它们对热导率应该不会有什么影响。
低温条件下热导率最大值的位置和高度由两种过程计算而得:声子边界散射和同位素13C原子散射。在T>200开氏度时,热导率受倒逆过程影响且200-300开氏度范围内散射对13C同位素的影响较弱。将该数据范围和理论模型相拟合可以求得公式3、4中A和B的值。我们选择参量C=670K作为中值,因为它对最终计算结果的影响较小。表一为拟合参量优化值。
图7为BDD的实验结果和理论曲线。在整个温度范围内理论曲线和实验数据的拟合较好。IIb型金刚石的热导率在190开氏度处达到最大值2100W/(m•K),比高纯金刚石热导率低了很多。然而BDD在室温条件下拥有相对1600W/(m•K)的较高热导率,且它和IIa型金刚石热导率的差值低于30%。
图七:BDD的实验结果和理论曲线;声子散射的不同过程的影响
结论
研究在20-400开氏度温度范围内对IIa型单晶高纯金刚石和BDD金刚石的热导率进行对比研究。结果表明在高于室温条件下,声子-声子散射对两种类型的金刚石热导率都有影响。在T>300开氏度条件下IIa型和IIb型金刚石热导率的差值大小低于30%。
低温条件下BDD热导率最大值受结构缺陷散射的影响,而非同位素杂质的影响(主要针对IIa型金刚石实验)。和IIa型金刚石相比,BDD热导率在T<140开氏度条件下出现急剧下降。根据该温度范围内的数据分析,扩展性结构缺陷上的声子散射对BDD热导率的影响要远大于散射对置换硼原子的影响。(编译:中国超硬材料网)