申请人:上海交通大学
发明人:马春翔 郑立波
摘要:本发明公开了一种黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法;所述方法包括:将金刚石飞刀刀杆与具有两维超声波的椭圆振动换能器相连,金刚石飞刀固定在刀杆端部;椭圆振动换能器固定在金刚石飞刀铣床主轴上;在椭圆振动换能器上加上正弦波电压,金刚石飞刀随椭圆振动换能器产生的两维椭圆振动进行超声波椭圆振动,同时,金刚石飞刀还随着铣床主轴在黑金属材料基体上进行轴向和径向的进给铣削运动,实现超声波椭圆振动金刚石飞刀铣削加工。本发明能有效地抑制金刚石飞刀铣削黑金属材料基体上的微沟槽时的金刚石飞刀的急剧扩散磨损和抑制微沟槽沟边处毛刺的产生,提高微沟槽形貌精度,实现微沟槽金刚石飞刀精密铣削加工。
主权利要求:1.一种黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法,其特征在于,所述方法包括如下步骤:S1、金刚石飞刀刀杆与具有两维超声波的椭圆振动换能器相连,金刚石飞刀固定在所述刀杆端部;所述椭圆振动换能器固定在金刚石飞刀铣床主轴上;所述黑金属材料基体工件装夹在铣床加工工作台上;S2、在所述椭圆振动换能器上加上正弦波电压,金刚石飞刀随椭圆振动换能器产生的两维椭圆振动进行超声波椭圆振动,同时,金刚石飞刀还随着铣床主轴在黑金属材料基体上进行轴向和径向的进给铣削运动,实现黑金属材料基体上微沟槽的超声波椭圆振动金刚石飞刀铣削加工。
2.如权利要求1所述的黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法,其特征在于,所述金刚石飞刀刀杆的长度为四分之三波长;所述波长指的是超声波在刀杆中传播的波长。
3.如权利要求1所述的黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法,其特征在于,所述正弦波电压为80~120伏。
4.如权利要求1所述的黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法,其特征在于,所述椭圆振动换能器在相互垂直的两个方向上发生超声波振动,在其输出端合成超声波椭圆振动,即所述两维椭圆振动。
5.如权利要求1或4所述的黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法,其特征在于,所述两维椭圆振动达到长轴:8~12μm,短轴:4~6μm,夹角:45~90°,谐振频率:19.5~22.5kHz的椭圆振动轨迹。
6.如权利要求1所述的黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法,其特征在于,通过调解两维椭圆振动的相位差,在金刚石飞刀上可得到不同方位的椭圆振动轨迹。
7.如权利要求1所述的黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法,其特征在于,所述超声波椭圆振动金刚石飞刀铣削加工为低频和高频相结合的周期性断续的铣削加工。
8.如权利要求7所述的黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法,其特征在于,表征超声波椭圆振动金刚石飞刀铣削加工过程的高频正负脉冲函数如下式: h ( t ) = 1 ( t b + n T ) ≤ t < ( t i + n T ) - 1 ( t i + n T ) ≤ t < ( t e + n T ) 0 ( t e + n T ) ≤ t < ( t b + ( n + 1 ) T ) , 其中,tb—在一个振动周期内铣削开始时刻ti—在每一周期中金刚石飞刀前刀面与切屑之间的摩擦力方向发生反转开始时刻te——在一个振动周期内铣削终了时刻T——椭圆振动周期n为自然数。
9.如权利要求7所述的黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法,其特征在于,在每一个高频切削加工周期刚开始后,椭圆振动金刚石飞刀在垂直方向上的振动速度小于切屑流出速度,金刚石飞刀前刀面与切屑之间的摩擦力方向与切屑流出方向相反;之后,椭圆振动金刚石飞刀在垂直方向上的振动速度逐渐增大,当该振动速度大于切屑流出速度时,金刚石飞刀前刀面与切屑之间的摩擦力方向发生反转,变为与切屑流出方向相同。
10.如权利要求1所述的黑金属材料基体上微沟槽的金刚石飞刀铣削加工方法,其特征在于,金刚石飞刀在水平方向上的超声波椭圆振动最大速度大于水平方向的进给铣削速度时,金刚石飞刀前刀面与切屑和工件之间发生分离。