摘要 总之,跟你之前了解到的AI都不一样。北京时间3月9日12:00整,一场举世瞩目的围棋“人机世界大战”在韩国首尔上演。比赛一方为谷歌公司研制的人工智能程序Al...
总之,跟你之前了解到的AI都不一样。北京时间3月9日12:00整,一场举世瞩目的围棋“人机世界大战”在韩国首尔上演。比赛一方为谷歌公司研制的人工智能程序AlphaGo,另一方则是围棋世界冠军、韩国名将李世石九段。
经过3个半小时的鏖战,李世石九段投子认输,输掉了这五番棋中的第一场。
不管最终结果如何,未来已经来临!
关于这场世纪大战,有8个问题你需要知道。
1,为什么要研究围棋AI?为什么是围棋,不是别的?
游戏,是AI最初开发的主要战地之一。博弈游戏要求AI更聪明、更灵活、用更接近人类的思考方式解决问题。游戏AI的开发最早可以追溯到1952年的一篇博士论文。1997年,国际象棋AI第一次打败顶尖的人类;2006年,人类最后一次打败顶尖的国际象棋AI。欧美传统里的顶级人类智力试金石,在电脑面前终于一败涂地,应了四十多年前计算机科学家的预言。
1997年纽约,与IBM深蓝电脑终局对弈开始时,一台电视监视器上的加里·卡斯帕罗夫。
但有一个游戏始终是人类大脑的专利——古老的围棋。 围棋AI长期以来举步维艰,顶级AI甚至不能打败稍强的业余选手。这似乎也合情合理:国际象棋中,平均每回合有35种可能,一盘棋可以有80回合;相比之下,围棋每回合有250种可能,一盘棋可以长达150回合。这一巨大的数目,足以令任何蛮力穷举者望而却步——而人类,我们相信,可以凭借某种难以复制的算法跳过蛮力,一眼看到棋盘的本质。但是,无论人怎么想,这样的局面当然不可能永远延续下去了。 2,研究下棋AI,需要研究人员的下棋水平很高吗?
不需要。AlphaGo背后是一群杰出的计算机科学家,确切的说,是机器学习(machine learing)算法领域的专家。科学家利用神经网络算法,将棋类专家的比赛记录输入给计算机,并让计算机自己与自己进行比赛,在这个过程中不断学习训练。某种程度上讲,AlphaGo的棋艺不是开发者教给他的,而是自学成才。
阿尔法狗还有一个巨大的缺陷:没有手。图左是阿法狗制作者之一,负责完成落子动作。
不过,研究出AlphaGo的(Deepmind)创始人杰米斯•哈萨比斯(Demis Hassabis)确实是棋类的狂热爱好者,哈萨比斯四岁开始接触国际象棋,并很快进化成神童级人物。正是在博弈游戏上的兴趣让哈萨比斯开始思考两个重要问题:人脑是怎样处理复杂信息的?更重要的,电脑也可以像人类一样吗?博士期间的哈萨比斯选择了学习认知神经科学和计算机神经科学。今天,38岁的哈萨比斯带着他的AlphaGo,向人类最顶级的博弈游戏之一——围棋发起进攻。3,AlphaGo是怎么下棋的?
AlphaGo 的核心是两种不同的深度神经网络。“策略网络”(policy network)和 “值网络”(value network)。它们的任务在于合作“挑选”出那些比较有前途的棋步,抛弃明显的差棋,从而将计算量控制在计算机可以完成的范围里——本质上,这和人类棋手所做的一样。
其中,“值网络”负责减少搜索的深度——AI会一边推算一边判断局面,局面明显劣势的时候,就直接抛弃某些路线,不用一条道算到黑;
而“策略网络”负责减少搜索的宽度——面对眼前的一盘棋,有些棋步是明显不该走的,比如不该随便送子给别人吃。
AlphaGo利用这两个工具来分析局面,判断每种下子策略的优劣,就像人类棋手会判断当前局面以及推断未来的局面一样。这样AlphaGo在分析了比如未来20步的情况下,就能判断在哪里下子赢的概率会高。
4,今天AlphaGo和过去的深蓝,谁更厉害?
我们先来看看围棋和国际象棋之间有什么差别:
第一,围棋每一步的可能下法非常多:围棋手在起手时就有19X19=361种落子选择,在比赛的任意阶段,也都有数以百计的可能下法。但国际象棋的可能下法通常只有50种左右。围棋最多有3^361种局面,这个数字大概是10^170,而已经观测到的宇宙中,原子的数量才10^80。国际象棋最大只有2^155种局面,称为香农数,大致是10^47。
第二,对国际象棋来说,只需要把目前棋盘上剩余棋子的价值总和算出来,就能大概知道棋盘上谁处于优势了。但这种方法对围棋来行不通,在围棋的棋局中,计算机很难分辨当下棋局的优势方和弱势方。
可见,同样是下棋,对付围棋要比对付国际象棋棘手得多。
让我们直观的看一下国际象棋和围棋的复杂度对比,上图是国际象棋,下图是围棋:
图片均来自Google
另外深蓝就是专门制造出来下国际象棋的。它评估盘面的标准完全依赖于国际象棋本身的规则,除了下棋它就干不了别的了,连五子棋都不会!但AlphaGo不同,围棋只是他的一个测试平台。工程师可以通过围棋,发展和测试AlphaGo的能力。这个能力将来会运用到各个领域。就像《星际争霸》还是角色扮演游戏中的NPC,高级人工智能不仅能成为强有力的对手,也可以变成优秀的团队伙伴。5,AlphaG的超强学习能力有没有上限?
对于这个问题,英国曼彻斯特大学计算机科学教授凯文·柯伦表达了否定态度。他认为,我们没有理由相信技术会有极限,特别是在AlphaGo这样的特定领域。
对战的最后时分。之后,李世石投子认输。
而来自南京大学计算机系的两位专家,周志华和俞扬则都认为,上限是客观存在的。周志华表示,“强化学习”奏效的关键,是两个模型都不错,而且有足够大的“差异”。当模型性能提升以后,其差异会显著下降,到了一定程度必然会使性能无法继续通过这种机制提升。其上限取决于高质量“有标记”样本(相当于真实李世石水平棋手的棋局)的数量。俞扬的观点是,上限不仅存在,而且已经和AlphaGo当下的水平极其接近。从AlphaGo的报道来看,DeepMind已经在想办法避免过拟合(即越学越差),这说明他们可能已经碰到了上限。
6,如果在全部5局中,AlphaGo以5:0战胜李世石,对人工智能而言意味着什么?
正如本文开头所说,未来已经来临。无论最终的结果如何,都无法阻止更多的人类终于开始用警惕的目光打量AI……围棋职业八段刘菁的评论是:“还来不及反应,一切来的似乎是太快了!面对毫无表情,连厕所都不上的阿尔法狗,4000年围棋的终结者今天就来了吗?空气中弥漫着机器的味道。”
人类啊,就算AI输了,难道你们就松口气了吗? 【小编的话】谷歌的AlphaGo给我们描绘了一个过于美好的景象:通过开放人工智能的接口,即可让人工智能在各行各业开始自我学习、不断成长,在将来的某一天或许就可以代替人类去解决各种更加现实、更加复杂的具体问题,就比如在我们超硬材料行业,人工智能通过不断学习后,就可以针对每一项客户要求,自动选择最优的原材料、最有效率的生产合成工艺、最节省时间的运输方式......总之就是全心全意为我们超硬材料行业服务。
不过,首先的问题是:我们的AlphaGo在哪里呢?