您好 欢迎来到超硬材料网  | 免费注册
远发信息:磨料磨具行业的一站式媒体平台磨料磨具行业的一站式媒体平台
手机资讯手机资讯
官方微信官方微信

元素六专利:单晶CVD合成金刚石材料

关键词 元素六 , 单晶 , CVD|2014-12-12 09:09:50|行业专利|来源 中国超硬材料网
摘要 申请号:201280068219.4申请人:六号元素技术有限公司摘要:一种单晶CVD合成金刚石材料,其包括:大于或等于5ppm的总生成态氮浓度,和均匀分布的缺陷,其中,所
  申请号:201280068219.4

       申请人:六号元素技术有限公司

       摘要: 一种单晶CVD合成金刚石材料,其包括:大于或等于5ppm的总生成态氮浓度,和均匀分布的缺陷,其中,所述均匀分布的缺陷通过下列特性中的一种或多种限定:(i)当通过次级离子质谱法(SIMS)在大于或等于50×50μm的区域上使用10μm或更小的分析区域进行映象时,总氮浓度拥有的逐点变化(point-to-pointvariation)小于平均总氮浓度值的30%,或者当通过SIMS在大于或等于200×200μm的区域上使用60μm或更小的分析区域进行映象时,总氮浓度拥有的逐点变化小于平均总氮浓度值的30%;(ii)使用77K紫外光-可见光吸收测量法测量的生成态氮空位缺陷(NV)浓度大于或等于50ppb,其中,氮空位缺陷均匀分布在合成单晶CVD金刚石材料中,使得当使用采用了50mW连续波激光器、在室温下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发,并且在大于或等于50×50μm的区域上用小于10μm的数据区间进行映象时,存在较低的逐点变化,其中,对于575nm的光致发光峰值(NV0)或者637nm的光致发光峰值(NV-)来说,高光致发光强度的区域与低光致发光强度的区域之间的氮空位光致发光峰值的强度面积比<2x;(iii)当使用采用了50mW连续波激光器、在室温下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发(在552.4nm下得到Raman峰值),并且在大于或等于50×50μm的区域上用小于10μm的数据区间进行映象时,Raman强度的变化使得存在较低的逐点变化,其中,低Raman强度的区域与高Raman强度的区域之间的Raman峰值面积比<1.25x;(iv)使用77K紫外光-可见光吸收测量法测量的生成态氮空位缺陷(NV)浓度大于或等于50ppb,其中,当使用采用了50mW连续波激光器、在77K温度下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发时,在对应于NV0的575nm下给出比在552.4nm下的Raman强度的120倍更大的强度,和/或在对应于NV-的637nm下给出比在552.4nm下的Raman强度的200倍更大的强度;(v)单原子替代氮缺陷(Ns)浓度大于或等于5ppm,其中,单原子替代氮缺陷均匀分布在合成单晶CVD金刚石材料中,使得通过使用1344cm-1红外吸收特征并对面积大于0.5mm2的区域采样,根据标准偏差除以平均值推导出的变化小于80%;(vi)由标准偏差除以平均值定义的红光发光强度的变化小于15%;(vii)中性单原子替代氮浓度的平均标准偏差小于80%;以及(viii)利用由平均灰度值大于50的显微图像得出的直方图测量的颜色强度,其中,所述颜色强度在单晶CVD合成金刚石材料中是均匀的,使得以灰度值标准偏差除以灰度值平均值为特征的灰度色的变化小于40%。

       主权利要求 1.一种单晶CVD合成金刚石材料,其包括:大于或等于5ppm的总生成态氮浓度,和均匀分布的缺陷,其中,所述均匀分布的缺陷通过下列特性中的一种或多种限定:(i)当通过次级离子质谱法(SIMS)在大于或等于50×50μm的区域上使用10μm或更小的分析区域进行映象时,总氮浓度拥有的逐点变化(point-to-pointvariation)小于平均总氮浓度值的30%,或者当通过SIMS在大于或等于200×200μm的区域上使用60μm或更小的分析区域进行映象时,总氮浓度拥有的逐点变化小于平均总氮浓度值的30%;(ii)使用77K紫外光-可见光吸收测量法测量的生成态氮空位缺陷(NV)浓度大于或等于50ppb,其中,氮空位缺陷均匀分布在整个整个合成单晶CVD金刚石材料中,使得当使用采用了50mW连续波激光器、在室温下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发,并且在大于或等于50×50μm的区域上用小于10μm的数据区间进行映象时,存在较低的逐点变化,其中,对于575nm的光致发光峰值(NV0)或者637nm的光致发光峰值(NV-)来说,高光致发光强度的区域与低光致发光强度的区域之间的氮空位光致发光峰值的强度面积比<2x;(iii)当使用采用了50mW连续波激光器、在室温下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发(在552.4nm下得到Raman峰值),并且在大于或等于50×50μm的区域上用小于10μm的数据区间进行映象时,Raman强度的变化使得存在较低的逐点变化,其中,低Raman强度的区域与高Raman强度的区域之间的Raman峰值面积比<1.25x;(iv)使用77K紫外光-可见光吸收测量法测量的生成态氮空位缺陷(NV)浓度大于或等于50ppb,其中,当使用采用了50mW连续波激光器、在77K温度下的光斑尺寸小于或等于10μm的514nm激光激发源进行激发时,在对应于NV0的575nm下给出比在552.4nm下的Raman强度的120倍更大的强度,和/或在对应于NV-的637nm下给出比在552.4nm下的Raman强度的200倍更大的强度;(v)单原子替代氮缺陷(Ns)浓度大于或等于5ppm,其中,单原子替代氮缺陷均匀分布在整个合成单晶CVD金刚石材料中,使得通过使用1344cm-1红外吸收特征并对面积大于0.5mm2的区域采样,根据标准偏差除以平均值推导出的变化小于80%;(vi)由标准偏差除以平均值定义的红光发光强度的变化小于15%;(vii)中性单原子替代氮浓度的平均标准偏差小于80%;以及(viii)利用由平均灰度值大于50的显微图像得出的直方图测量的颜色强度,其中,所述颜色强度在整个单晶CVD合成金刚石材料中是均匀的,使得以灰度值标准偏差除以灰度值平均值为特征的灰度色的变化小于40%。

       2.如权利要求1所述的单晶CVD合成金刚石材料,其中,所述 单晶CVD合成金刚石材料包括所述特性中的两种、三种、四种、五 种、六种、七种或全部八种。

       3.如权利要求1或2所述的单晶CVD合成金刚石材料,其中, 当通过次级离子质谱法(SIMS)在大于或等于50×50μm的区域上用 定义为10μm或更小的分析区域进行映象时,总氮浓度拥有的逐点变 化小于平均氮浓度值的25%、20%、15%、10%、5%、3%、或1%。

       4.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,其中,当在大于或等于50×50μm的区域上用定义为10μm或更 小的分析区域进行映象时,来自氮空位缺陷的发光拥有逐点变化,使 得高PL强度的区域和低PL强度的区域之间的强度比小于1.8、1.6、 1.4、或1.2。

       5.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,其中,在575nm下的NV0发光大于在552.4nm下的Raman强度 的140倍、160倍、或180倍,和/或在637nm下的NV-发光大于在 552.4nm下的Raman强度的220倍、240倍、或260倍;

       6.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,单原子替代氮缺陷均匀分布在整个合成单晶CVD金刚石材料中, 使得通过使用来自单原子替代氮缺陷的1344cm-1红外吸收特征并对面 积大于0.5mm2的区域采样,根据标准偏差除以平均值推导出的变化 小于60%、40%、20%、或10%。

       7.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,其中,红色发光的变化小于10%、8%、6%、或4%。

       8.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,其中,中性单原子替代氮浓度的平均标准偏差小于60%、40%、 20%、或10%。

       9.如前述权利要求中的任意一项所述的单晶CVD合成金刚石材 料,其中,当在大于或等于200×200×200μm的体积上成像时,颜色 强度拥有的逐点变化小于由灰度值标准偏差除以灰度值平均值定义的 平均颜色强度的30%、20%、10%、或5%。

       10.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,总氮浓度大于或等于7ppm、10ppm、15ppm、20ppm、 30ppm、50ppm、75ppm、100ppm、150ppm、200ppm、或300ppm。

       11.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,单原子替代氮缺陷(Ns)浓度大于或等于5ppm、7ppm、 10ppm、15ppm、20ppm、30ppm、50ppm、75ppm、100ppm、150ppm、 200ppm、或300ppm。

       12.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,生成态氮空位缺陷(NV-)浓度大于或等于120ppb、 140ppb、160ppb、180ppb、200ppb、250ppb、300ppb、400ppb、500ppb、 1000ppb、或5000ppb。

       13.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,具有的硅浓度小于或等于1×1015原子cm-3。

       14.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,所述单晶CVD合成金刚石材料具有的最长尺寸大于或 等于200μm、500μm、1mm、1.5mm、2.0mm、3.0mm、或5.0mm。

       15.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,具有的体积大于或等于0.01mm3、0.05mm3、0.1mm3、0.5mm3、 1.0mm3、3.0mm3、6.0mm3、9.0mm3、或15.0mm3,所述一种或多种 特性在该体积中成立。

       16.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,所述单晶CVD合成金刚石材料为厚度小于200μm、 100μm、50μm、20μm、10μm、5μm、2μm、或1μm的层的形式。

       17.如权利要求1到15中的任意一项所述的单晶CVD合成金刚 石材料,其中,所述单晶CVD合成金刚石材料为厚度大于200μm、 500μm、1mm、1.5mm、2.0mm、3.0mm、或5.0mm的层的形式。

       18.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,具有的错位晶束密度小于或等于:106错位cm-2、104错位cm-2、 3×103错位cm-2、103错位cm-2、102错位cm-2、或10错位cm-2。

       19.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,具有的双折射率小于或等于5×10-5、1×10-5、5×10-6、或1× 10-6;

       20.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其已经进行退火和/或照射。

       21.如前述权利要求中的任意一项所述的单晶CVD合成金刚石 材料,其中,所述单晶CVD合成金刚石材料具有下列颜色中的一种 或多种:粉红色,黄色,绿色,橙色,红色,紫色。

       22.一种制造如前述权利要求中的任意一项所述的单晶CVD金 刚石材料的方法,所述方法包括: 形成包括氢气、碳源气体、氮源气体和可选的氧源气体的CVD 合成氛围,其中,所述CVD合成氛围包括的氮相对于全部气体组分 的原子浓度的范围为0.1%到3%; 在安装于支撑基底上的单晶金刚石基底上生长单晶CVD金刚石 材料;并且 控制支撑基底的温度,使得在生长过程中支撑基底上任意给定点 处的温度变化小于50℃的目标温度值,整个生长周期的温度变化小于 50℃的目标温度值,且目标温度值处于1000℃到1400℃的范围内, 其中CVD合成氛围包括以下的至少一种: 碳相对于全部气体组分的原子浓度的范围为0.1%到2.0%;和 氧相对于全部气体组分的原子浓度的范围为5%到40%。

       23.如权利要求22所述的方法,其中,氮相对于全部气体组分的 原子浓度的范围为0.1%到2%、0.1%到1%、或0.2%到0.8%。

       24.如权利要求22或23所述的方法,其中,碳相对于全部气体 组分的原子浓度的范围为0.3%到1.7%、0.5%到1.5%、0.7%到1.3%、 或0.8%到1.2%。

       25.如权利要求22-24中的任意一项所述的方法,其中,不向CVD 合成氛围中添加氧源气体。

       26.如权利要求22-24中的任意一项所述的方法,其中,向CVD 合成氛围中添加氧源气体,使得CVD合成氛围包括的氧的原子浓度 的范围为5%到40%、10%到30%、10%到25%、或15%到20%。

       27.如权利要求22-26中的任意一项所述的方法,其中,单晶金 刚石基底通过钎焊合金安装到支撑基底上,所述钎焊合金的熔点大于 或等于1000℃、1100℃、1200℃、1300℃、或1400℃。

       28.如权利要求22-27中的任意一项所述的方法,其中,支撑基 底包括难熔金属。

       29.如权利要求22-28中的任意一项所述的方法,其中,跨越支 撑基底的温度变化小于40℃、30℃、20℃、10℃或5℃。

       30.如权利要求22-29中的任意一项所述的方法,其中,跨越单 晶金刚石基底的温度变化小于50℃、40℃、30℃、20℃、10℃或5℃。

       31.如权利要求22-30中的任意一项所述的方法,其中,单晶金 刚石基底通过熔点低于目标温度的钎焊合金安装到支撑基底上,所述 目标温度用于在单晶金刚石基底上生长单晶CVD金刚石材料,使得 在单晶CVD金刚石材料的生长期间,钎焊合金处于液态。
 

① 凡本网注明"来源:超硬材料网"的所有作品,均为河南远发信息技术有限公司合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:超硬材料网"。违反上述声明者,本网将追究其相关法律责任。

② 凡本网注明"来源:XXX(非超硬材料网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

③ 如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

※ 联系电话:0371-67667020

延伸推荐

郑州势垒取得基于 MPCVD 的金刚石高效合成装置专...

金融界2024年11月16日消息,国家知识产权局信息显示,郑州势垒科技有限公司取得一项名为“一种基于MPCVD的金刚石高效合成装置”的专利,授权公告号CN222008176U,申请...

日期 2024-11-18   行业专利

单晶金刚石的动态摩擦抛光

张浩晨,徐锴,燕增宇,宋志朋,陈广超中国科学院大学材料科学与光电技术学院ZhangHC,XuK,YanZY,etal.Dynamicfrictionpolishingofsingl...

日期 2024-11-04   超硬新闻

探索单晶金刚石马赛克生长:晶种厚度及生长前处理的深入...

单晶金刚石(SCD)作为一种超宽带隙半导体材料,由于其大带隙、高导热性和高载流子迁移率等特殊性能,在高频电力电子、高功率激光窗口和高能粒子探测器中显示出...

日期 2024-11-01   超硬新闻

无锡齐勇半导体科技申请钻石单晶夹持型激光切割设备及方...

金融界2024年10月30日消息,国家知识产权局信息显示,无锡齐勇半导体科技有限公司申请一项名为“种钻石单晶夹持型激光切割设备及方法”的专利,公开号CN118832315A,申请日...

日期 2024-11-01   行业专利

河南鸿泰钻石科技申请功能性金刚石单晶制备的磁选装置专...

金融界2024年10月30日消息,国家知识产权局信息显示,河南鸿泰钻石科技有限公司申请一项名为“一种用于功能性金刚石单晶制备的磁选装置”的专利,公开号CN118831716A,申请...

日期 2024-10-31   行业专利

普莱斯曼:助力核聚变,院士高度评价国产自主MPCVD...

今年3月30日,中科院合肥物质科学研究院等离子体物理研究所自主设计、研制并拥有完全知识产权的磁约束核聚变实验装置——EAST全超导托卡马克装置——在面向聚变堆无涂层全金属壁条件下重...

日期 2024-10-24   超硬新闻

单晶金刚石异质外延生长有限,该如何推动技术整合发展

金刚石被广泛提议用于未来的量子和电子技术。金刚石中的色心具有卓越的相干性和强大的自旋光子界面。这使得量子网络演示和量子传感应用,特别是核磁共振(NMR)...

日期 2024-10-17   超硬新闻

从路线到难题:大尺寸单晶金刚石合成解析

金刚石因其在力学、电学、热学和光学方面的优异性能,被广泛认为具有巨大的应用潜力。然而,当前工业上通过高温高压法大规模生产的单晶金刚石通常尺寸较小,一般不...

日期 2024-10-12   超硬新闻

总投资2亿元! CVD金刚石薄膜及多晶金刚石研磨材料...

据河南日报消息,10月8日上午,平顶山市第十四期“三个一批”活动在郏县经开区举行,其中一个重点项目——CVD金刚石薄膜及多晶金刚石研磨材料生产项目正式开...

日期 2024-10-11   超硬新闻

豫西集团中南钻石公司顺利承办大尺寸单晶金刚石半导体材...

9月21-22日,大尺寸单晶金刚石半导体材料专题研讨会在河南南阳顺利召开。此次研讨会由中国有色金属学会宽禁带半导体专业委员会主办,中国电子科技集团公司第十三研究所、豫西集团、固态微...

日期 2024-09-30   超硬新闻